$$\log K^{\rm D} = \log K^{\rm M} + \log \frac{{}_{\rm m} \gamma_{\rm A}}{{}_{\rm m} \gamma_{\rm B}} + \log \frac{{}_{\rm m} \gamma_{\rm HB}}{{}_{\rm m} \gamma_{\rm HA}} \quad (10)$$

For a series of anions A⁻ relative to a standard anion B⁻, eq 10 becomes eq 11. Substitution for $\log_{m} \gamma_{A^-}$ from eq 9 gives eq 12.

$$\log K_{a}^{D}[HA] = \log K_{a}^{M}[HA] + \log m\gamma_{A^{-}} - \log m\gamma_{HA} + \text{constant} \quad (11)$$
$$\log K_{a}^{D}[HA] = \log K_{a}^{M}[HA] + \log \frac{k^{M}}{k^{D}} + \log k^{M} + \log k^{$$

 $\log_{m} \gamma_{CH_{sI}} - \log_{m} \gamma_{TS} - \log_{m} \gamma_{HA} + \text{constant} \quad (12)$

Methyl iodide is the standard for rate determinations, so ${}_{m}\gamma_{CH_{3}I}$ is constant. The medium activity coefficients, ${}_{m}\gamma_{TS}$, are for a series of transition states, involving different A, of the type (ACH₃I)⁻. Since the plot (Figure 4), log K_{a}^{D} [HA] vs. log K_{a}^{M} [HA] + log k^{M}/k^{D} , is linear

and of unit slope for a quite representative range of anions A⁻, the expression log ${}_{m}\gamma_{TSm}\gamma_{HA}$ must be a constant for transfer from dimethylformamide to methanol. The large solvent effect on the acid-base equilibrium (eq 1) is therefore most likely due to differences in anion solvation of the type described. The result that can be accepted with confidence from this work is that medium effects on K_a can be correlated with medium effects on k, as in eq 13. The speculation regarding δ_A -^H requires further investigation and this is in progress.²⁷

$$\log K_{\rm a}{}^{\rm D}/K_{\rm a}{}^{\rm M} = \log k{}^{\rm M}/k{}^{\rm D} + 4.5$$
(13)

Acknowledgment. We thank Professor J. Vaughan for a sample of 2,6-dimethyl-4-nitrophenol. Our interest in this work developed through communications with Professors Vaughan, D. J. Cram, and I. M. Kolthoff.

Oxygen-18 Exchange Reactions of Aldehydes and Ketones

Marianne Byrn and Melvin Calvin

Contribution from Laboratory of Chemical Biodynamics, Lawrence Radiation Laboratory, and Department of Chemistry, University of California, Berkeley, California. Received December 9, 1965

Abstract: Using infrared spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and β -keto esters reacting with oxygen-18 enriched water. In acidic tetrahydrofuran, the exchange times for the aromatic aldehydes increase in the order acetaldehyde < benzaldehyde < 2-naphthaldehyde < 1-naphthaldehyde < 9-phenanthraldehyde \ll indolealdehyde, chlorophyll b, and pheophytin b. A series of cyclic ketones in piperidine have exchange times in the order of acetone, ninhydrin < cyclohexanone, cyclobutanone < cyclopentenone \ll cyclopentanone, fluorenone \ll indanone. A different sequence was found for the acid-catalyzed exchange reactions of ketones in tetrahydrofuran since cyclohexanone, acetone < cyclopentanone < indanone \ll fluorenone. The β -keto esters had slower exchange times than their respective simple ketones. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophyll a and chlorophyll derivatives.

This investigation of the exchange reactions of aldehydes and ketones with O^{18} enriched water has been undertaken in order to be able to examine the participation of chlorophyll carbonyl groups as chemical intermediates in the oxidation of water during photosynthesis. Photosynthetic mechanisms have been proposed by Calvin¹ and Franck² in which the separation of oxidant and reductant, required for oxygen evolution and carbon dioxide fixation, is a photocatalytical chlorophyll reaction. Essential to these mechanisms is the ability of a chlorophyll carbonyl group to undergo hydration. The present work evaluates the exchange ability of chlorophyll in comparison with simple ketones, aldehydes, and β -keto esters.

The literature on the O¹⁸ exchange reactions of carbonyl functions indicates that aldehydes exchange very rapidly in comparison to ketones. Acetaldehyde exchanges completely at room temperature in neutral solution within 24 hr,³ while acetone exchange is incomplete after 24 hr at 100° .⁴ A comprehensive survey of the literature by Samuel and Silver⁵ gives exchange rates in various solvents, acidic and basic, for acetone, acetaldehyde, acetoacetate, *para*-substituted benzophenones, methylcyclohexanones, and substituted benzaldehydes.

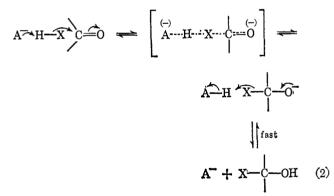
Compounds were chosen for this study because of their similarities to chlorophylls a and b (see Figure 1). Ring V of chlorophyll a is a β -keto ester of cyclopentanone which is fused to an aromatic nucleus, and chlorophyll b has a pyrrole aldehyde subunit as a part of a larger aromatic system. Thus, cyclopentanones, other cyclic ketones, simple β -keto esters, and aromatic and heterocyclic aldehydes have been studied.

An infrared technique is used to analyze the rate of O^{18} incorporation in the carbonyl group. Halmann and Pinchas⁶ showed in 1958 that the C= O^{18} band of

M. Calvin, "Horizons in Biochemistry," M. Kasha and B. Pullman, Ed., Academic Press Inc., New York, N. Y., 1962, p 34.
 J. Franck, "Research in Photosynthesis," H. Gaffron, Ed., Inter-

science Publishers, Inc., New York, N. Y., 1957, p 124.

⁽³⁾ J. B. M. Herbert and I. Lauder, Trans. Faraday Soc., 34, 433 (1938)


⁽⁴⁾ M. Cohn and H. C. Urey, J. Am. Chem. Soc., 60, 679 (1938).
(5) D. Samuel and B. L. Silver, Advan. Phys. Org. Chem., 3, 123 (1965).

benzophenone appears at 1635 cm⁻¹, whereas the $C=O^{16}$ band is at 1664 cm⁻¹. This 29-cm⁻¹ shift is similar to those obtained more recently by numerous observers studying both esters and ketones.⁷⁻⁹ In addition, the magnitude of the shift is in fair agreement with the theoretical value of 40 cm⁻¹ calculated using the harmonic oscillator approximation.⁶ With this large shift one can easily follow the loss of the $C=O^{16}$ band as the $C = O^{18}$ band increases. The exchange time is measured as a complete exchange time rather than a half-time-that is, when the C=O16 band no longer decreases and the C=O¹⁸ band no longer increases the exchange reaction is complete. The primary advantage of using infrared rather than mass spectroscopy is that several carbonyl groups on one compound can often be distinguished, as is the case with chlorophyll.

Investigations which elucidate the mechanism of addition reactions to carbonyl groups have been summarized recently by Jencks.¹⁰ General acid catalysis involves the concerted addition of HX (H_2O^{18}) and transfer of a proton, as shown in eq 1. General base

$$H - X \xrightarrow{(+)} O^{+} H \xrightarrow{(+)} A \xrightarrow{(-)} H \xrightarrow{(-)} A \xrightarrow{(+)} A \xrightarrow{(+)} H \xrightarrow{(+)} A \xrightarrow{(+)} H^{+} + A^{-} + X \xrightarrow{(-)} O^{-} H^{-} A \xrightarrow{fast} H^{+} + A^{-} + X \xrightarrow{(-)} O^{-} O^{+} O^{+} (1)$$

catalysis involves the concerted removal of a proton from the attacking reagent, to facilitate attack at the carbonyl group, as shown in eq 2. In the back reac-

tions, the roles of the acid and base catalysts are reversed, thus completing the O¹⁸ exchange.¹⁰

Experimental Section

Tetrahydrofuran (THF), which is freshly distilled from lithium aluminum hydride, was found to be the only suitable solvent for the hydrochloric acid catalyzed exchange reactions. It is miscible with water, transparent in the infrared from 1500 to 1800 cm⁻¹, and dissolves chlorophyll, chlorophyll derivatives, ketones, aldehydes, and β -keto esters. Piperidine was used as the solvent and catalyst

(8) G. J. Karabatsos, J. Org. Chem., 25, 315 (1960).

1917

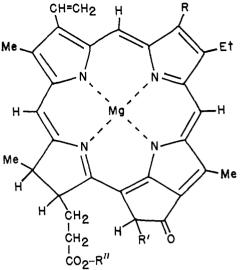


Figure 1. Nomenclature and substituent designations (+, magnesium present: — magnesium absent).

nostani present, , magnesiani aosent).						
	Compound	Mg	R	R'	R''	
Ia	chlorophyll a	+	CH₃	CO ₂ Me	phytol	
Ila	pyrochlorophyll a	+	CH₃	н	phytol	
IIIa	methyl pheophorbide a		CH₃	CO ₂ Me	Me	
IVa	methyl pyropheophor-	_	CH₃	н	Me	
	bide a					
Ib	chlorophyll b	+	CHO	CO ₂ Me	phytol	
Vb	pheophytin b	_	CHO	CO ₂ Me	phytol	

for the basic reactions. Pyridine was the only other basic solvent examined which did not possess interfering absorption in the infrared, but it was not even strong enough a base to catalyze the exchange reaction for acetone. In all cases, $10 \ \mu l$ or $0.01 \ g$ of the substrate and 10 μ l of 60.7 % D₂O¹⁸ (analysis by Weizmann Institute) were used. A high deuterium content water was used because normalized water absorbs in the infrared at 1650 cm⁻¹. A control sample using D_2O^{16} was run for each compound, to ensure that spectral changes were not due to chemical change or deuterium exchange. The molar excess of O¹⁸ in the water over exchangeable O¹⁶ was of the order of 25- to 50-fold for the ketones and 100-fold for the aldehydes. For the ketones, 50 μ l of THF or piperidine was used, whereas the aldehydes were less soluble and required 150 μ l of solvent.

Infrared cells (0.025-mm path length) with IR-tran windows were used as the reaction vessels, since these windows are resistant to aqueous solutions, both acidic and basic. This enabled the exchange to be followed using a Beckman IR-7 spectrometer as the reaction proceeded at room temperature. The first few minutes of reaction time are spent in order to fill the cell and obtain the first spectrum, thus making it impossible to obtain a zero-time reading. Because as much as 5 min may have elapsed, in several instances the reaction was complete by the time the first spectrum was obtained. In such cases, the designation in the following tables is for an immediate reaction (Imm). For the remainder of the cases the time is stated for the earliest spectrum which shows no subsequent change in the carbonyl bands, this being the time required for the substrate and O¹⁸ enriched water to have come to equilibrium within the sensitivity of our observations. The type of spectra obtained is illustrated in Figure 2, depicting a mixture of benzaldehyde in 0.001 N HCl in THF. The exchange time of 20 min is in the optimum range for observational accuracy using this technique. As the exchange times become longer, they are more difficult to determine because the kinetics are exponential in O¹⁶ remaining in the carbonyl and O18 being incorporated, and as the end point is approached the spectroscopic changes become very small. If the exchange time is greater than an hour, spectra taken every 10–15 min show little change after the first few observations.

High-temperature exchange reactions were accomplished in sealed tubes in an oil bath. At the completion of the reaction, the solutions were evaporated and the materials were purified using thin layer chromatography.

Using this infrared technique, it is impossible to determine the exact extent of incorporation; the molar extinction coefficient for

⁽⁶⁾ M. Halmann and S. Pinchas, J. Chem. Soc., 1703 (1958).

⁽⁷⁾ S. Pinchas, D. Samuel, and M. Weiss-Broaday, ibid., 2666 (1961).

⁽⁹⁾ A. Lapidot, S. Pinchas, and D. Samuel, J. Chem. Soc., 1128 (1963).

⁽¹⁰⁾ W. P. Jencks, Progr. Phys. Org. Chem., 2, 63 (1964), and references therein.

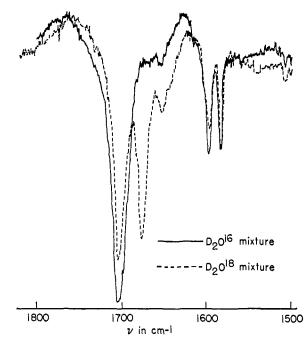


Figure 2. Benzaldehyde in 0.001 N HCl in THF after 20 min.

the heavy isotope band has been shown in previous research not to be the same as for the O¹⁶ carbonyl band, and the extinction coefficients are not yet predictable.7-9 A rough comparison of the peak sizes indicates the exchange approaches 100% of the theoretically possible O¹⁸ incorporation, but in some cases the equilibrium appears to be at about 60-80% exchange. This could be a solvent effect on the extinction coefficient. However, the extent of incorporation of O¹⁸ in several of the compounds was determined using low voltage on the CEC mass spectrometer 21-130. Ten microliters of cyclopentanone, cyclohexanone, and benzaldehyde, respectively, were mixed in 100 μ l of acidic THF and 10 μ l of D₂O¹⁸, and allowed to stand until completion of the exchange. Fifty microliters was used for an infrared spectrum, and 50 μ l was taken for a mass spectrum. The tetrahydrofuran had to be evaporated in order not to drown out the carbonyl compound mass spectrum. From the ratio of the peak heights, the extent of O18 incorporation was determined.

$$\% O^{18} = \frac{(M+2)100}{M+(M+2)}$$

The limit of detection of C= O^{18} by infrared was evaluated by preparing benzaldehyde samples using successively smaller amounts of O^{18} and determining the extent of incorporation by mass spectroscopy. It was found that a 2% O^{18} incorporation is barely detectable above the noise level, assuming the spectrum is intense and the location of the isotope absorption is known. For less ideal conditions, 5–10% incorporation can easily be detected.

The assignments for the bands of the β -keto esters were taken from the work by Rhoads, *et al.*¹¹ The sample ketones and aldehydes showed single bands in the carbonyl region and presented no difficulty. Cyclopentanone is an exception to this fact in some aqueous solvent systems, in which case two peaks are found. Two peaks are also found for several other compounds, as noted in the tables. The infrared spectrum of chlorophyll has been recently studied by Anderson¹² and Katz,¹³ and their assignments are in agreement. The carbonyl region is clear in polar solvents and allows for relatively easy analysis of an isotope shift of 30 cm⁻¹.

The ketones, aldehydes, and β -keto esters were obtained from commercial sources and used without further purification. The chlorophylls were prepared by the method of Calvin and Anderson.¹⁴

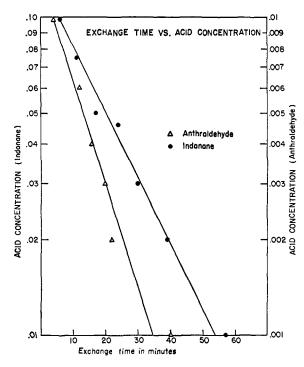


Figure 3. Exchange time vs. acid concentration for indanone and anthraldehyde.

The pyro compounds were prepared by the method of Pennington, et al.,¹⁵ although a single homogeneous product was not obtained as their procedure stated. Separation from starting materials using thin layer chromatography yielded the pure products possessing the correct spectral properties.

Results and Discussion

An unfortunate limitation in determining exchange time with this infrared technique is the very small range (5 to 60 min) which can be determined with appreciable accuracy, thus making it necessary to change acid concentrations in order to bring the exchange time into a measurable region.

Since the C=O¹⁸ molar extinction coefficient is not known, nor is the equilibrium constant for the exchange known, we were unable to determine the absolute kinetic constants for each compound as would have been desirable in order to compare reactions of different compounds at various acid concentrations. Presumably the rate law in acid might be expected to obey the relation $d[O^{16}]/dt = -k[H^+][O^{16}]$. For two compounds, indanone and anthraldehyde, the acid concentration was varied in an empirical fashion keeping the exchange times within the region mentioned above, and then expressing the apparent time for equilibrium as some function of the hydrogen ion concentration. The equilibrium time observation appears to have been made in such a manner as to give the empirical relation shown in Figure 3. This was used to determine relative exchange rates, when necessary, for compounds whose rates were very different at any given acidity.

Aldehydes. The results of the acid-catalyzed reactions of a series of aldehydes are summarized in Table I. For the series of aromatic aldehydes which exchange in 0.001 N HCl, the results are consistent with the mechanism discussed earlier. The effect of the protonation

⁽¹¹⁾ S. J. Rhoads, J. C. Gilbert, A. W. Decora, R. J. Spangler, and M. J. Urbigkit, *Tetrahedron*, **19**, 1625 (1963).

⁽¹²⁾ A. F. H. Anderson, Thesis, University of California, UCRL-10951, 1963.

⁽¹³⁾ J. J. Katz, G. L. Closs, F. C. Pennington, M. R. Thomas, and H. H. Strain, J. Am. Chem. Soc., 85, 3801 (1963).

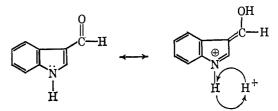
⁽¹⁴⁾ A. F. H. Anderson and M. Calvin, Nature, 194, 285 (1962).

⁽¹⁵⁾ F. C. Pennington, H. H. Strain, W. A. Svec, and J. J. Katz, J. Am. Chem. Soc., 86, 1418 (1964).

Table I.	Acid-Catalyz	ed Exchange	Reactions of	'Aldehydes in	Tetrahydrofuran
----------	--------------	-------------	--------------	---------------	-----------------

Compound		Concn of HCl, N	Time, min	<u>C=0</u> ¹⁶ ν, c	m^{-1} C=O^{18}	Empirical resonance energy
Acetaldehyde ^a	СН₃СНО сно	0.001	Imm	1720	1692	0
Benzaldehyde ^b	\bigcirc	0.001	20	1703	1675	36.0
2-Naphthaldehyde	СНО	0.001	25	1697	1668	61.0
1-Naphthaldehyde	сно	0.001	35	1692	1664	61.0
9-Anthraldehyde	сно	0.001	45	1676	1650	83.5
9-Phenanthraldehyde	CHO	0.001	55	1691	1661	91.3
3-Indole aldehyde Chlorophyll b∘ Pheophytin bª	CHO CHO	0.005 0.005 0.005	20 20 20	1667 1665 1663	1641 1637 1636	••••

^a Decomposes rapidly. ^b 47% 0¹⁸ determined by mass spectroscopy. ^c Purification of C=O¹⁸ compound on mannitol tlc using 2% methanol in isooctane. ^d Purification of C=O¹⁸ compound on mannitol tlc using 13% acetone in isooctane. Frequently, a considerable amount of the labeling was lost during purification.


of the oxygen is to increase the electrophilicity of the carbonyl carbon and make it more reactive toward addition reactions. Opposing this increased electrophilicity is the effect of the extensive aromatic system, which acts as an electron donor to delocalize the positive charge on the carbonyl carbon and, hence, reduce the reactivity of the group in addition reactions, as shown in the following resonance form. This ability

of an aromatic system to delocalize charge can be measured as the empirical resonance energy,¹⁶ which is directly related to the HMO delocalization energy and corresponds to the resonance hybrid.¹⁷

For the exchange reactions of these aromatic aldehydes, a good correlation exists between the empirical resonance energy, the time of the exchange reaction, and the frequency of the carbonyl absorption, both for C=O¹⁶ and C=O¹⁸ (see Figure 4). The relationship between the frequency of absorption and the rate of reaction is a reflection of the well-known effect of conjugation on carbonyl stretching frequencies.

The three remaining heterocyclic aldehydes, indolealdehyde, chlorophyll b, and pheophytin b, have identical exchange times. For indolealdehyde this exchange time, which is three times slower than benzaldehyde, is not caused by the aromatic ring since it is not directly conjugated with the carbonyl group. The slow rate can be attributed to a very stable resonance form involving the nitrogen atom, which would inhibit carbonyl addition reactions.

The same type of resonance structure can be drawn for both chlorophyll b and pheophytin b. However,

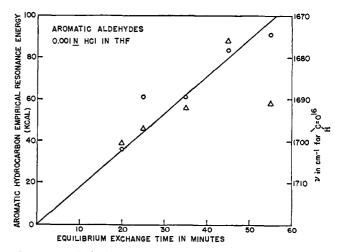
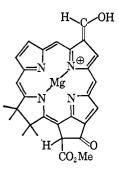


Figure 4. Relationship between exchange time, resonance energy, and stretching frequency for aromatic aldehydes.

such contributors are much less stable than the one for indolealdehyde because of the electrostatic repulsion


⁽¹⁶⁾ G. W. Wheland, "Resonance in Organic Chemistry," John Wiley

and Sons, Inc., New York, N. Y., 1955, p 98. (17) A. Streitwieser, Jr., "Molecular Orbital Theory for Organic Chemists," John Wiley and Sons, Inc., New York, N. Y., 1961, p 241.

		_	ν, c	m ⁻¹
Compound		Time	C=O ¹⁶	C==O ¹⁸
Acetone	CH₃—C—CH₃	Imm	1708	1678
Ninhydrin		Imm	1714ª 1739	1692
Cyclohexanone	Ů	10 min	1707	1678
Cyclobutanone		10 min	1780	1747
Cyclopentenone		15 min	1739	1708
Cyclopentanone		1 hr	1735	1702
Fluorenone		1 hr	1716	1685
Indanone	$\langle \rangle$	3.5 hr	1713	1683
Ethyl acetoacetate	$CH_3 - C - CH_2 - C - O - Et$	10 min	1711	1684
Carbethoxycyclopentanone ^b	C-OEt		1735	

^a Two carbonyl frequencies are observed for ninhydrin, as they often are for anhydrides. ^b The ester carbonyl and keto carbonyl stretching frequencies are both in the same region and overlap; therefore, it is impossible to determine a rate for the reaction.

of the chelated magnesium and the positively charged nitrogen. With indolealdehyde, the hydrogen can be easily removed from the positively charged nitrogen, while this is not true of the magnesium. It follows

then that the hydrogens which replace the magnesium in pheophytin b must also be unable to freely leave the heterocyclic nucleus since the exchange times for the two compounds are identical. Thus the slow exchange time for chlorophyll b and pheophytin b is due to the extensive chlorin aromatic system, whereas indole aldehyde exchange is inhibited by the presence of the nitrogen atom.

Base-catalyzed aldehyde exchange reactions were attempted using two different solvents, pyridine and piperidine. Pyridine was not sufficiently basic to catalyze the reactions at a rate which can be detected using the infrared technique. Piperidine was found to be so strongly basic that it formed an addition product, removing the carbonyl absorption band. Inorganic hydroxides were not used because they are known to allomerize chlorophyll.

Ketones. The results of a series of base-catalyzed ketone exchange reactions and several β -keto ester exchange reactions are summarized in Table II. There are no direct correlations between the exchange times, the stretching frequencies, or any other readily measurable quantity. Cook¹⁸ has found a relationship between the XX'C=O bond angle, the ionization potential, and the carbonyl stretching frequency, but these relationships cannot be extended to encompass the exchange times. However, these results can be qualitatively analyzed according to the mechanism presented above, on the basis of both electronic and steric considerations.

Acetone has the fastest exchange time having neither steric interference nor electron-donating groups to reduce the electrophilicity of the carbonyl carbon. Ninhydrin (1,2,3-triketohydrindene) is also extremely rapid, as could be expected with the electron-withdrawing effects of the opposed keto groups and the lack of any steric interference.

The series cyclohexanone, cyclobutanone, cyclopentanone can be evaluated by considering the amount of ring strain which is lost when the sp^2 carbonyl bond is hydrated to form an sp^3 tetrahedral carbon in the inter-

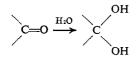

(18) D. Cook, Can. J. Chem., 39, 31 (1961).

Table III. Acid-Catalyzed Exchange Reactions of Ketones in Tetrahydrofuran

		Concn of		ν, cn	n ⁻¹	Relativ
Compound		HCl, N	Time	C-016	C==O ¹⁸	rates
Cyclohexanone ^e	Č	0.001	Imm	1705	1682	<0.3
Acetone	CH ₃ —C—CH ₃	0.001	Imm	1710	1680	<0.3
Cyclopentanone ^e		0.005	10 min	1745ª 1728	1706	1
Cyclobutanone ^e	□ [°]	0.01	Imm	1782	1749	1.2
Ninhydrin		0.01	1.5 hr	1730° 1757	1704	11
Cyclopentenone		0.1	10 min	1664∝ 1703	1647 1682	12
Indanone	$\langle \rangle$	0.1	15 min	1713	1686	19
Fluorenone ^d		0.01	2.5 hr	1719	1686	>76
Ethyl acetoacetate	$CH_3 - CH_2 - CH_2 - OEt$	0.005	20 min	1719	1688	
Carbethoxy- cyclopentanone ^b	C-OEt	0.1	Imm	1750	•••	

^a Shows two ketone peaks in some solvents. ^b The keto peak of carbethoxycyclopentanone is a shoulder of the larger ester carbonyl peak, making it difficult to follow the exchange. The reaction time was determined from the disappearance of the O¹⁶ shoulder. ^c 46% O¹⁸ determined by mass spectroscopy. ^d 65°; at room temperature in acid concentration of 1 N some exchange takes place immediately, but the spectrum is very broad and difficult to interpret. ^e Decomposes rapidly.

mediate

The angles are 117, 94, and 108°, respectively, for the carbonyl bond, whereas the bond formed for the hydrate is 110°. Thus, cyclopentanone is the slowest because it loses the least amount of ring strain. The relationship between acetone, cyclohexanone, and cyclopentanone can be seen in other carbonyl addition reactions such as semicarbazone formation.¹⁰ Additional views are those of Price and Hammett¹⁹ who note the increased reactivity of cyclohexanone compared to acetone as almost entirely due to a lower heat of activation. Brown, Fletcher, and Johannessen²⁰ have pointed out that a cyclohexane ring in which all of the carbon atoms are tetrahedral may exist in the particularly stable chair form, in which all of the valences are staggered, but that when one of the carbon atoms is trigonal, as in cyclohexanone, this stable configuration is impossible. Since the rate-controlling step involves the transformation of a trigonal carbon atom to a tetrahedral configuration, the reaction occurs particularly easily with cyclohexanone. In the case of cyclopentanone, the valences are more easily staggered

(19) F. P. Price, Jr., and L. P. Hammett, J. Am. Chem. Soc., 63, 2387 (1941).

(20) H. C. Brown, R. S. Fletcher, and R. B. Johannesen, *ibid.*, 73, 212 (1951).

in the ketone than in the reactive intermediate, and a decrease in reactivity is observed.

In the remainder of the compounds, cyclopentenone, fluorenone, and indanone, the ring strain is approximately the same since cyclopentanone rings are the fundamental units involved. The exchange times can be considered on the basis of the number of hydrogens which are eclipsed in the intermediate and the effect of aromatic rings in reducing the electrophilicity of the carbonyl carbon. Cyclopentenone is faster than cyclopentanone although a decrease in reactivity could be expected from the additional unsaturated bond of cyclopentenone. However, the unsaturated compound has one less hydrogen to sterically interfere in the inter-

mediate hydrate. Another example of the predominance of steric interference over electronic inhibition is the difference in exchange times between indanone and fluorenone. Fluorenone, with two aromatic rings adjacent to the cyclopentanone ring, is 3.5 times faster than indanone, which has one adjacent aromatic ring, but two hydrogens which interfere.

The results of the acid-catalyzed exchange reactions of ketones and several β -keto esters are summarized in Table III. It is immediately obvious that the sequence

of compounds from the fastest to the slowest acidcatalyzed reaction is quite different from the basecatalyzed reactions. This reversal of order on going from acid to base catalysis was also noted by $Menon^{21}$ when studying *para*-substituted benzophenones.

The inversion of cyclobutanone and cyclopentanone can be explained on the basis of the basicities of the ketones. The pK_{BH^+} for cyclohexanone, acetone, cyclopentanone, and cyclobutanone are -6.8, -7.2, -7.5, and -9.5, respectively.²² The rate of exchange correlates with the increasing basicity of the ketones; the least basic, cyclobutanone, is least stable in the hydrated form and thus has the slowest exchange rate.

Campbell and Edward²² showed that the basicity of cyclic ketones paralleled changes in stretching frequency; this correlation can be made with exchange rates for the first four compounds, although for the remainder of the compounds there is no relationship between stretching frequency, exchange rates, and basicity.

Ninhydrin is quite slow, and could be compared in basicity to a diketone. For diketones, basicity decreases as *n* decreases $[-C(O)(CH_2)_nC(O)-]$ and when n = 0 basicity is less than typical ketones—that is, the form [-C(OH)C(OH)-] is very unlikely.¹⁹ Since nin- \oplus

hydrin has three consecutive keto groups (2-hydrate), it follows that the reaction rate should be slower than the simple ketones. The fact that ninhydrin is faster than indanone reflects the electron-withdrawing effect of the additional keto group to increase the reactivity of the opposed carbonyl group.

For the remainder of the acid-catalyzed ketone exchange reactions, the balance between electronic and steric effects are the reverse of those for the basecatalyzed reactions. Cyclopentenone is considerably slower than cyclopentanone and reflects the importance of the additional unsaturated bond and the relative unimportance of the steric effects of the additional hydrogen. (Dahn²³ found the rate of cholestanone (cyclohexanone) to be 10³ times faster than cholestenone (2-cyclohexenone), which again demonstrates the effect of one α,β unsaturated bond.) Another instance of the predominant effect of electron-donating functions is the very slow fluorenone exchange time relative to indanone. The aromatic ring hinders the reaction more than the additional hydrogens on the indanone moiety. This predominant effect of electrondonating aromatic rings over sterically interfering hyrogen atoms in the acid-catalyzed reactions is reasonable, since the stability of the conjugate acid toward the formation of the hydrate will be dependent on the electronic effects.

 β -Keto Esters. Cohn and Urey⁴ showed that the exchange reaction of acetone does not follow the path

(21) See ref 5; B. C. Menon, Ph.D. Thesis, University of Arkansas, 1964.

(22) H. J. Campbell and J. T. Edward, Can. J. Chem., 38, 2109 (1960).
(23) H. Dahn, Proceedings of the Conference on Marked Molecules, Brussels, EURATON, 1964, p 1303. of enolization, but is faster than enolization. The enol form is not subject to electrophilic attack and would decrease the rate of exchange. This is demonstrated with both ethyl acetoacetate and carbethoxycyclopentanone, which are considerably slower than acetone and cyclopentanone.

Biological Model Compounds. Table IV summarizes the exchange reactions that were attempted with chlorophyll and chlorophyll derivatives.

Table IV. Exchange Reactions of Biological Model Compounds

Compound	Acid	Base
Chlorophyll a	Pheophytinization in HCl; no in- corporation in 10% HOAC, 66 hr	Decomposition
Pyrochlorophyll a	Pheophytinization	No incorporation in piperidine, 1 day at 65°
Pheophorbide a	No incorporation in 0.1 <i>N</i> HCl in THF, 1 day at 65°	Decomposition
Pyropheophorbide a	Incorporation in 0.01 N HCl in THF, 1 day at 65°	Decomposition

The exchange reactions that were attempted with chlorophyll a and chlorophyll derivatives generally were unsuccessful. The pigments are unstable in basic solution and the magnesium is removed in acid solution. However, those compounds for which there were stable exchange conditions were quite resistant to hydration and exchange. The reactions were carried out under much more vigorous conditions than the model compounds, using temperatures of 65°. For the acid-exchange reactions it appears that the large aromatic ring of the porphyrin nucleus has considerably decreased the reactivity of the C₉ carbonyl beyond that of any of the model compounds.

From the results of the ketone exchange reactions in basic solution, it was expected that the simple ketone derivative of chlorophyll a, pyrochlorophyll, would show some exchange reaction under these strong conditions. Steric hindrance of the two C_{10} hydrogens is no greater than for indanone, although the electronic effects are considerably greater. Nevertheless, there is no obvious reason for such complete lack of reactivity of the carbonyl group. It is, however, clear that the isocyclic carbonyl oxygen atom would be stable to exchange during the course of any normal isolation procedure from the biological material.

Acknowledgment. The work described in this paper was supported in part by the U. S. Atomic Energy Commission.